Search results for "Almost everywhere"
showing 10 items of 28 documents
On the Almost Everywhere Convergence of Multiple Fourier-Haar Series
2019
The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.
A remark on differentiable functions with partial derivatives in Lp
2004
AbstractWe consider a definition of p,δ-variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p,δ-variation extends the definition of n-variation of Malý and the definition of p-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula.
Hausdorff measures, Hölder continuous maps and self-similar fractals
1993
Let f: A → ℝn be Hölder continuous with exponent α, 0 < α ≼ 1, where A ⊂ ℝm has finite m-dimensional Lebesgue measure. Then, as is easy to see and well-known, the s-dimensional Hausdorif measure HS(fA) is finite for s = m/α. Many fractal-type sets fA also have positive Hs measure. This is so for example if m = 1 and f is a natural parametrization of the Koch snow flake curve in ℝ2. Then s = log 4/log 3 and α = log 3/log 4. In this paper we study the question of what s-dimensional sets in can intersect some image fA in a set of positive Hs measure where A ⊂ ℝm and f: A → ℝn is (m/s)-Hölder continuous. In Theorem 3·3 we give a general density result for such Holder surfacesfA which implies…
Error Bounds for the Numerical Evaluation of Integrals with Weights
1988
This paper is concerned with a procedure of obtaining error bounds for numerically evaluated integrals with weights. If \( - \infty \mathop < \limits_ = a < b\mathop < \limits_ = \infty \), w integrable over [a,b] and positive almost everywhere, then an approximation of \({I_W}f: = \int\limits_a^b {w\left( t \right)f\left( t \right)dt} \) by a quadrature rule \({Q_n}f: = \sum\limits_{i = 0}^n {{\alpha _i}f\left( {{t_i}} \right)} \) is leading to the error Enf ≔ Iwf ‒ Qnf. An algorithm is derived for the computation of bounds for |Enf| depending on the smoothness of the integrand f and on the degree of exactness of Q. As initial values this algorithm needs moments of the weighting function w…
When a convergence of filters is measure-theoretic
2022
Abstract Convergence almost everywhere cannot be induced by a topology, and if measure is finite, it coincides with almost uniform convergence and is finer than convergence in measure, which is induced by a metrizable topology. Measures are assumed to be finite. It is proved that convergence in measure is the Urysohn modification of convergence almost everywhere, which is pseudotopological. Extensions of these convergences from sequences to arbitrary filters are discussed, and a concept of measure-theoretic convergence is introduced. A natural extension of convergence almost everywhere is neither measure-theoretic, nor finer than a natural extension of convergence in measure. A straightforw…
Anisotropic -Laplacian equations when goes to
2010
Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…
Uniform rectifiability implies Varopoulos extensions
2020
We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…
Absolutely continuous functions with values in a Banach space
2017
Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
A remark on absolutely continuous functions in ℝ n
2006
We introduce the notion ofα, λ-absolute continuity for functions of several variables and we compare it with the Hencl’s definition. We obtain that eachα, λ-absolutely continuous function isn, λ-absolutely continuous in the sense of Hencl and hence is continuous, differentiable almost everywhere and satisfies change of variables results based on a coarea formula and an area formula.
Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets
2013
We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed