Search results for "Almost everywhere"

showing 10 items of 28 documents

On the Almost Everywhere Convergence of Multiple Fourier-Haar Series

2019

The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.

40A05Control and OptimizationBounded set (topological vector space)Type (model theory)01 natural sciencesmultiple Fourier-Haar seriesHomothetic transformationCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences42C10Almost everywhere0101 mathematicsMathematicsSeries (mathematics)Applied Mathematics010102 general mathematicsRegular polygonAlmost everywhere convergenceFunction (mathematics)Fourier transformsymbols010307 mathematical physicslacunar serieAnalysisJournal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)
researchProduct

A remark on differentiable functions with partial derivatives in Lp

2004

AbstractWe consider a definition of p,δ-variation for real functions of several variables which gives information on the differentiability almost everywhere and the absolute integrability of its partial derivatives on a measurable set. This definition of p,δ-variation extends the definition of n-variation of Malý and the definition of p-variation of Bongiorno. We conclude with a result of change of variables based on coarea formula.

Change of variablesPure mathematicsPolish groupApplied MathematicsMathematical analysisNull set or empty setReal-valued functionHaar nullPartial derivativeAlmost everywhereCoarea formulaDifferentiable functionAnalysisMathematics
researchProduct

Hausdorff measures, Hölder continuous maps and self-similar fractals

1993

Let f: A → ℝn be Hölder continuous with exponent α, 0 < α ≼ 1, where A ⊂ ℝm has finite m-dimensional Lebesgue measure. Then, as is easy to see and well-known, the s-dimensional Hausdorif measure HS(fA) is finite for s = m/α. Many fractal-type sets fA also have positive Hs measure. This is so for example if m = 1 and f is a natural parametrization of the Koch snow flake curve in ℝ2. Then s = log 4/log 3 and α = log 3/log 4. In this paper we study the question of what s-dimensional sets in can intersect some image fA in a set of positive Hs measure where A ⊂ ℝm and f: A → ℝn is (m/s)-Hölder continuous. In Theorem 3·3 we give a general density result for such Holder surfacesfA which implies…

CombinatoricsLebesgue measureRiesz–Markov–Kakutani representation theoremGeneral MathematicsTotally disconnected spaceHausdorff dimensionMathematical analysisOuter measureAlmost everywhereHausdorff measureMeasure (mathematics)MathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Error Bounds for the Numerical Evaluation of Integrals with Weights

1988

This paper is concerned with a procedure of obtaining error bounds for numerically evaluated integrals with weights. If \( - \infty \mathop < \limits_ = a < b\mathop < \limits_ = \infty \), w integrable over [a,b] and positive almost everywhere, then an approximation of \({I_W}f: = \int\limits_a^b {w\left( t \right)f\left( t \right)dt} \) by a quadrature rule \({Q_n}f: = \sum\limits_{i = 0}^n {{\alpha _i}f\left( {{t_i}} \right)} \) is leading to the error Enf ≔ Iwf ‒ Qnf. An algorithm is derived for the computation of bounds for |Enf| depending on the smoothness of the integrand f and on the degree of exactness of Q. As initial values this algorithm needs moments of the weighting function w…

Combinatoricssymbols.namesakeSmoothness (probability theory)Degree (graph theory)Simple (abstract algebra)StatisticssymbolsGaussian quadratureAlmost everywhereFunction (mathematics)Mathematics
researchProduct

When a convergence of filters is measure-theoretic

2022

Abstract Convergence almost everywhere cannot be induced by a topology, and if measure is finite, it coincides with almost uniform convergence and is finer than convergence in measure, which is induced by a metrizable topology. Measures are assumed to be finite. It is proved that convergence in measure is the Urysohn modification of convergence almost everywhere, which is pseudotopological. Extensions of these convergences from sequences to arbitrary filters are discussed, and a concept of measure-theoretic convergence is introduced. A natural extension of convergence almost everywhere is neither measure-theoretic, nor finer than a natural extension of convergence in measure. A straightforw…

Convergence in measureMetrization theoremUniform convergenceConvergence (routing)Applied mathematicsAlmost everywhereTopology (electrical circuits)Geometry and TopologyExtension (predicate logic)Measure (mathematics)MathematicsTopology and its Applications
researchProduct

Anisotropic -Laplacian equations when goes to

2010

Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…

Dirichlet problemGroup (mathematics)Applied MathematicsMathematical analysisp-LaplacianStandard probability spaceAlmost everywhereFunction (mathematics)Limit (mathematics)Laplace operatorAnalysisMathematicsNonlinear Analysis: Theory, Methods &amp; Applications
researchProduct

Uniform rectifiability implies Varopoulos extensions

2020

We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…

Dirichlet problemosittaisdifferentiaaliyhtälötPure mathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsepsilon-approximabilityBoundary (topology)Codimensionharmonic measureharmoninen analyysiMeasure (mathematics)uniform rectifiabilityCarleson measureMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsNorm (mathematics)solvability of the Dirichlet problemClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereRectifiable setCarleson measure estimateAnalysis of PDEs (math.AP)MathematicsBMO
researchProduct

Absolutely continuous functions with values in a Banach space

2017

Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.

Discrete mathematicsApplied Mathematics010102 general mathematicsBanach space0102 computer and information sciencesAbsolute continuity01 natural sciencesw⁎-DifferentiabilitySobolev spaceMetric differentiability010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaPointwise Lipschitz functionAlmost everywhereDifferentiable function0101 mathematicsAnalysisMathematics
researchProduct

A remark on absolutely continuous functions in ℝ n

2006

We introduce the notion ofα, λ-absolute continuity for functions of several variables and we compare it with the Hencl’s definition. We obtain that eachα, λ-absolutely continuous function isn, λ-absolutely continuous in the sense of Hencl and hence is continuous, differentiable almost everywhere and satisfies change of variables results based on a coarea formula and an area formula.

Discrete mathematicsChange of variablesContinuous functionGeneral MathematicsAlmost everywhereQuasi-continuous functionCoarea formulaDifferentiable functionAlgebra over a fieldAbsolute continuityMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Radon–Nikodym Property and Area Formula for Banach Homogeneous Group Targets

2013

We prove a Rademacher-type theorem for Lipschitz mappings from a subset of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened Radon-Nikodym property. We provide a metric area formula that applies to these mappings and more generally to all almost everywhere metrically differentiable Lipschitz mappings defined on a Carnot group. peerReviewed

Discrete mathematicsMathematics::Functional AnalysisProperty (philosophy)General Mathematicsmetric area formulata111Mathematics::Analysis of PDEsCarnot groupBanach homogeneous groupsalmost everywhere differentiabilityRadon-Nikodym propertyLipschitz continuityRadon–Nikodym theoremBanach homogeneous groups; metric area formula; almost everywhere differentiability; Radon-Nikodym propertyMetric (mathematics)Homogeneous groupMathematics::Metric GeometryAlmost everywhereDifferentiable functionMathematics
researchProduct